











# IoT技術研究センター

〔プロジェクト研究センター設置期間:平成30年4月~令和10年3月(予定)〕

# 良 戸 (むねさわ よしおみ)/工学部 機械システム工学科・教授

共同研究者 (学内)

淑彦(はたとしひこ)/情報学部 情報工学科・教授 加藤 浩介(かとう こうすけ)/情報学部 情報工学科・教授 大谷 幸三(おおたに こうぞう)/情報学部 情報工学科・教授 山岸 秀一(やまぎししゅういち)/情報学部 情報コミュニケーション学科・教授 青木 真吾(あおき しんご)/情報学部 情報コミュニケーション学科・准教授 神垣 太持(かみがき たもつ)/情報学部 情報コミュニケーション学科・准教授 八房 智顯(やつふさともあき)/工学部 知能機械工学科・教授

# センターの概要

#### (1)主たる研究分野

【分野】 情報学(計算基盤・情報学基礎) 【キーワード】 IoT、AI、DX、デジタルツイン

### (2)研究概要

情報通信技術の発展により、あらゆるモノをインター ネットに接続することで、センサーシステムからのデー タを収集、分析し、その結果を利活用するIoT (Internet of Things)の導入が拡がっている。一方、 データ分析におけるAI(人工知能)技術の発展も著し く、産業のみならず多くの分野で生産性の向上や豊か で便利な暮らしの構築を目指し、その導入が加速され ている。これらの技術は、政府が第6期科学技術・イノ ベーション基本計画(2021年3月)で掲げたデジタルツ インすなわちサイバー空間とフィジカル空間の融合に よる新たな価値の創出の構築による「超スマート社会」 (Society5.0)の実現の原動力になっている。



図1 Society5.0 超スマート社会実現のイメージ 出典: 内閣府作成 第6期科学技術・イノベーション基本計画(関係資料)

その応用分野として最も成長が期待されているのは 工場などの生産現場である。しかし、そこでは作業プロ セスのデジタル化に加えて、作業環境あるいは特殊技 術の継承といった人にも関わる多岐にわたる課題解決 が必要である。また本質的にデータ取得のための仕組 みそのものにイノベーションが求められている。一方、 農林水産業など自然環境がその産業の成り立ちを左 右する分野では、IoTの導入は比較的大規模な事業に 限られており、社会全体に関わるSociety5.0への確か なロードマップの作製は容易ではない。

そこで本研究センターではSociety5.0に向けて、こ れから求められる高度なIoTシステムを構築するため の先端技術の研究に加えて、応用技術の調査・情報蓄 積を系統立てて行うことを目的とする。具体的には、実 世界の大規模データをもとにサイバー空間で将来を予 測、その予測データをフィジカル空間にフィードバック する、というIoTのデータの流れに着目した技術を以下 のように分類し:

- (1) センシング技術
- (2) データ収集技術
- (3) データ分析技術
- (4) データ活用技術

それぞれの領域で研究を進め整理する。さらに、地域 企業と連携、また研究会や講演会などの開催により情 報共有を図り、社会へ貢献することを目指す。

超スマート社会: 必要なもの・サービスを、必要な人に、必 要な時に、必要なだけ提供し、社会の様々なニーズにきめ 細かに対応でき、あらゆる人が質の高いサービスを受けら れ、年齢、性別、地域、言語といった様々な違いを乗り越え、 活き活きと快適に暮らすことのできる社会

# 研究成果等

#### (1)研究成果

#### 平成30年から令和3年までの研究成果

公共交通機関あるいはインフラ保全におけるIoT展開 あるいは、第一次産業(農林水産業)への展開を考えた 調査及び研究を進めた。

まず、前者の調査を実施し、その成果はIEEE広島支部 の活動に協力する形で、調査結果をIEEE Metro Area Workshop (協力: ひろしまサンドボックス推進協議会) のプログラムに取り込み、広島地域のIT企業から多数の 参加者を得た。また、減災IoT分野で水害情報配信シス テムの研究を進めた。

後者については農業分野におけるセンサネットワー ク構築支援システム、及び水産業に対しては広島湾に おける牡蠣養殖の生産性を高めるための広域情報取 得無線システム、及び水中画像色相を用いた生育養分 であるクロロフィル濃度の分析手法の研究を推進した。

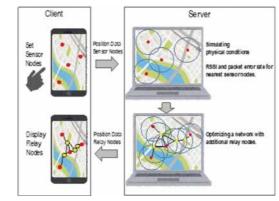



図2 開発した農林業向けセンサネットワーク構築支援アプリ

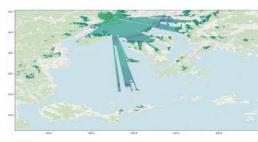



図3 開発した水産業向け広域無線電波伝搬シミュレータ

#### 令和4年の研究成果

中小製造業における技術継承も視野に入れたDX推 進の支援を目的として、特注品に代表されるクラフト製 品の生産工程デジタル化のためのフレームワークの研 究を進めた。デジタル化の第一ステップは一連の製造プ ロセスの正確な分析と各要素ステップを価値連鎖として 描くことから始まる。次に最も価値が創造されるプロセ ス現場に対して撮像システムを設置し、将来のAI化を念 頭にした画像分析のワークフローを提案した。これらの 研究成果は「マスカスタマイゼーションにおけるDXの推 進」をテーマとして県下で実施されたビジネス会合、イベ ント等で発表した。

また、DX時代において製品価値を高めるためには、 製品単独の性能に加えてIoTを用いたサービスの創造 がある。現代において、一般消費財から長寿命の産業機 器に至るまで、価値は商品そのものよりもむしろこの サービスによって生まれていると言っても過言ではな い。この視点から産業機器におけるメンテナンスサービ スのためのIoT技術を新たな研究課題として、取り組み を開始した。

#### (2)今後の展開・応用分野等

Society5.0は部分的なデジタルツインが重なりネット ワーク化していくことで実現していくものと考えられる。 そしてその概念の浸透にはIoT技術による各システムの 実証が鍵となる。そのキーテクノロジーは、進化する種々 の通信ネットワークの適切なシステム構成、及びデータ 処理と意思決定をサポートするAI機能の設計・配置であ る。従って、こういったソリューションを提供するビジネス が様々な形で生まれてくるはずである。

本センターはこのような考え方から、上記した2つの キーテクノロジーそれぞれに対して応用研究を進める。 その成果は学会などでの発表・議論で内容を深め、その 知見を企業に発信し、同時に課題を発掘し積極的にビジ ネス展開の可能性を探索する。

#### (3)実績(論文·特許·共同研究·産学連携·補助金)等

IEEE Metro Area Workshop, [Mobileが創り出すIoT, IoTが加速するMobility], 2020年10月16日 広島

JASA中国地域交流セミナー 「~ IoTがつなぐ未来(あした) ~」 2023年1月26日 広島

経産省令和4年度「地域新成長産業創出促進事業費補助金」地域デジタルイノベーション促進事業採択

広阜県内民間企業3社

#### **発表論**立

吉冨和樹、大谷幸三、"無線センサネットワークを利用した水害情報配信システムの開発 ~複数地点からのデータ収集と情報配信に関する検討~、"2020年度電気・情報関 連学会中国支部連合大会、2020.10.24(電気学会中国支部奨励賞受賞)

市場広樹、河内洸貴、濱崎利彦、"920MHz帯低消費電力無線システムを用いた島影における回折伝搬の分析" 2020年度(第71回)電気・情報関連学会中国支部連合大 会、2020.10.24(電気学会中国支部奨励賞 受賞)

K. Kawauchi, E. Oda, and T. Hamasaki, "Long distance propagation characteristics on the sea using a 20mW 920MHz wireless system", 2020 USNC-CNC-URSI North American Radio Science Meeting.

他、IoT関連国際会議発表 2020年1件、2021年3件、経済団体、官公庁、企業からの依頼講演 DXに関して広島商工会議所流通委員会、広島経済同友会、広島県等

P-13

P-14